Allele Frequencies in World Populations

HLA > Haplotype Frequency Search

Please specify your search by selecting options from boxes. Then, click "Search" to find HLA Haplotype frequencies that match your criteria. Remember at least one option must be selected.
A B C DRB1 DPA1 DPB1 DQA1 DQB1

Population:  Country:  Source of dataset : 
Region:  Ethnic Origin:     Type of study :  Sort by: 
Sample Size:      Sample Year:     Loci Tested: 
Displaying 1 to 100 (from 4,814) records   Pages: 1 2 3 4 5 6 7 8 9 10 of 49  

Line Haplotype Population Frequency (%) Sample Size Distribution¹
 1  A*33-B*58-C*03  Pakistan Baloch 11.100066
 2  A*33-B*58  Pakistan Baloch 10.800066
 3  A*33:03-B*44:03-C*14:03  Japan pop 5 10.7000117
 4  A*33-B*44-C*07-DRB1*07  Myanmar Rakhine 9.375048
 5  A*33:03-C*03:02  Taiwan Minnan pop 1 8.3000102
 6  A*33:03-B*58:01  Taiwan Hakka 8.200055
 7  A*33:03-C*03:02  Taiwan Hakka 8.200055
 8  A*33-B*58-DRB1*03  Pakistan Baloch 8.200066
 9  A*33:03-B*58:01  Singapore Chinese 8.0000149
 10  A*33:03-B*58:01  Taiwan Minnan pop 1 7.8000102
 11  A*33:03-B*58:01-C*03:02  China Southwest Dai 7.7000124
 12  A*33-B*44-DRB1*13  Brazil Parana Oriental 7.600033
 13  A*33:03-B*58:01-C*03:02  China Canton Han 7.4000264
 14  A*33-B*44-C*07-DRB1*07  Myanmar Mon 7.031064
 15  A*33-B*08-DRB1*03  Pakistan Burusho 6.700092
 16  A*33-B*14:02-DRB1*01-DQB1*05  Mexico San Luis Potosi, San Luis Potosi city 6.666730
 17  A*33:03-B*58:01-DRB1*03:01  Taiwan Tzu Chi Cord Blood Bank 6.6000710
 18  A*33-B*58-C*03  Malaysia Perak Rawa 6.500023
 19  A*33:03-B*58:01  Hong Kong Chinese 6.4000569
 20  A*33-B*44-DRB1*07  Bangladesh Dhaka Bangalee 6.3000141
 21  A*33:03-B*58:01  USA Asian 6.1000358
 22  A*33:03-B*58:01-DRB1*03:01  Malaysia Patani 6.000025
 23  A*33-B*14:02-DRB1*01  Pakistan Karachi Parsi 6.000091
 24  A*33:03-B*58:01-C*03:02  USA Asian 5.9000358
 25  A*33-B*08  Pakistan Burusho 5.900092
 26  A*33:03-B*58:01-C*03:02  South Korea pop 3 5.8000485
 27  A*33:01-B*14:02-DRB1*01:02  Israel Kavkazi Jews 5.74002,840
 28  A*33-B*44-C*14  South Korea pop 1 5.6000324
 29  A*33-B*44-DRB1*13:02  South Korea pop 1 5.5000324
 30  A*33-B*58-C*03:02  South Korea pop 1 5.4000324
 31  A*33:03-B*44:03-DRB1*07:01  Malaysia Kelantan 5.357128
 32  A*33-B*58-C*03-DRB1*03  Myanmar Bamar 5.319047
 33  A*33-B*58-C*03-DRB1*03-DQB1*02-DPB1*04  Myanmar Bamar 5.319047
 34  A*33-B*14-C*08-DRB1*04  Macedonia MBMDR - Macedonian Muslims 5.263276
 35  A*33-B*08-C*07:02  Pakistan Burusho 5.200092
 36  A*33:03-B*44:06-C*15:02:01  India Mumbai Maratha 5.100091
 37  A*33:03:01-B*44:03:02-C*07:06  South African Indian population 5.000050
 38  A*33:03:01-B*58:01:01-C*03:02:02  South African Indian population 5.000050
 39  A*33:03-B*58:01  Taiwan Thao 5.000030
 40  A*33:03-C*03:02  Taiwan Thao 5.000030
 41  A*33:03-B*53:01  Cuba Mulatto 4.800042
 42  A*33:03-B*44:03-C*14:03  South Korea pop 3 4.7000485
 43  A*33:03-B*58:01-C*03:02-DRB1*03:01  Hong Kong Chinese BMDR 4.64297,595
 44  A*33:03-B*58:01-C*03:02-DRB1*03:01-DRB3*02:02-DQB1*02:01  USA NMDP Chinese 4.60045599,672
 45  A*33:03-B*35:03-DRB1*13:01  China Yunnan Province Wa 4.6000119
 46  A*33:03-B*44:03-DRB1*13:02  South Korea pop 3 4.6000485
 47  A*33:03-B*44:03-DRB1*13:02  South Korea pop 10 4.60004,128
 48  A*33-B*58  Pakistan Burusho 4.600092
 49  A*33-B*58-C*03  Pakistan Burusho 4.600092
 50  A*33-B*58-DRB1*03  Thailand pop 4 4.540016,807
 51  A*33:03-B*58:01  USA Asian pop 2 4.53101,772
 52  A*33:03-B*44:03-C*14:03-DRB1*13:02  Japan pop 16 4.473018,604
 53  A*33:03-B*58:01-C*03:02-DRB1*03:01  China Southwest Dai 4.4000124
 54  A*33:03-B*58:01-DRB1*03:01  China Southwest Dai 4.4000124
 55  A*33-B*14:01-C*08:02  Pakistan Karachi Parsi 4.400091
 56  A*33-B*44-C*07:01  Pakistan Karachi Parsi 4.400091
 57  A*33:01-B*14:02-DRB1*01:02:01  Portugal North 4.300046
 58  A*33-B*58  Pakistan Kalash 4.300069
 59  A*33-B*58-DRB1*03  Pakistan Kalash 4.300069
 60  A*33:03-B*58:01-DRB1*03:01  Hong Kong Chinese cord blood registry 4.200354293,892
 61  A*33:03-B*44:03-C*14:03-DRB1*13:02-DQB1*06:04  South Korea pop 3 4.2000485
 62  A*33-B*58-C*03-DRB1*03  Myanmar Rakhine 4.167048
 63  A*33-B*44-C*14  Brazil Parana Japanese 4.1600192
 64  A*33:01-B*58:01-C*03:02-DRB1*03:01-DQB1*02:01  Malaysia Peninsular Chinese 4.1240194
 65  A*33:01-B*14:02-C*08:02-DRB1*01:02-DQB1*05:01  Tunisia 4.0000100
 66  A*33:03-B*40:01-DRB1*15:02  Malaysia Patani 4.000025
 67  A*33:03-B*44:03-C*14:03-DRB1*13:02-DRB3*03:01-DQB1*06:04  USA NMDP Japanese 3.92665524,582
 68  A*33:03-B*58:01-C*03:02-DRB1*03:01  Taiwan pop 2 3.9000364
 69  A*33-B*44-DRB1*07  Pakistan Karachi Parsi 3.900091
 70  A*33:01-B*14:02-DRB1*01:02  Azores Oriental Islands 3.800043
 71  A*33-B*44-DRB1*07  Malaysia pop 3 3.80001,445
 72  A*33-B*58-DRB1*03  United Arab Emirates 3.8000298
 73  A*33-B*44-C*07-DRB1*07  Myanmar Shan 3.704054
 74  A*33-B*58-C*03-DRB1*15  Myanmar Shan 3.704054
 75  A*33:03-B*58:01-DRB1*03:01  China Guangxi Region Maonan 3.7000108
 76  A*33:03-B*58:01-C*03:02-DRB1*03:01-DRB3*02:02-DQB1*02:01  USA NMDP Vietnamese 3.66814743,540
 77  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Hidalgo, Pachuca 3.658541
 78  A*33:03-B*44:03  USA Asian 3.6000358
 79  A*33:03-B*44:03-C*14:03-DRB1*13:02-DQB1*06:04-DPB1*04:01  Japan Central 3.6000371
 80  A*33:03-B*58:01  Taiwan Pazeh 3.600055
 81  A*33:03-C*03:02  Taiwan Pazeh 3.600055
 82  A*33:03-B*18:01-DRB1*07:01  Malaysia Kelantan 3.571428
 83  A*33:03-B*58:01-C*03:02-DRB1*03:01-DQB1*02:01  Vietnam Hanoi Kinh pop 2 3.5000170
 84  A*33-B*35-DRB1*15  Bangladesh Dhaka Bangalee 3.5000141
 85  A*33-B*44-DRB1*15  Bangladesh Dhaka Bangalee 3.5000141
 86  A*33:03-B*44:03-C*14:03-DRB1*13:02-DRB3*03:01-DQB1*06:04  USA NMDP Korean 3.49153977,584
 87  A*33:01:01-B*14:02:01-C*08:02:01-DRB1*03:01:01-DQB1*02:01:01  Spain, Canary Islands, Gran canaria island 3.4900215
 88  A*33:03-B*44:03-DRB1*07:01  Malaysia Champa 3.448329
 89  A*33:03-B*58:01-DRB1*03:01  Malaysia Champa 3.448329
 90  A*33-B*58  Pakistan Mixed Pathan 3.4000100
 91  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Jalisco, Tlajomulco 3.333330
 92  A*33:03-B*14:05-C*05:09  India West Coast Parsi 3.300050
 93  A*33-B*58-DRB1*03  Pakistan Burusho 3.200092
 94  A*33-B*44-C*07-DRB1*07  Myanmar Bamar 3.191047
 95  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Sonora, Ciudad Obregón 3.1469143
 96  A*33:03-B*44:03-C*14:03-DRB1*13:02-DQA1*01:02-DQB1*06:04-DPA1*01:03-DPB1*04:01  Japan pop 17 3.13003,078
 97  A*33:03-B*18:01-DRB1*12:01  Sao Tome Island Angolar 3.100032
 98  A*33:03-B*44:03-C*07:01/07:06  South Korea pop 3 3.1000485
 99  A*33-B*15-DRB1*15  Bangladesh Dhaka Bangalee 3.1000141
 100  A*33-B*58-DRB1*13:02  South Korea pop 1 3.1000324

Notes:

* Haplotype Frequencies: Total number of copies of the haplotype in the population sample (Haplotypes / 2n) shown in percentages (%).
   Important: This field has been expanded to two decimals to better represent frequencies of large datasets (e.g. where sample size > 1000 individuals)
¹ Distribution - Shows the geographic distribution in overlaid maps of the complete haplotype (left icon) or the input alleles if low level resolution was entered (right icon).


Displaying 1 to 100 (from 4,814) records   Pages: 1 2 3 4 5 6 7 8 9 10 of 49  


   

Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations.
Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, Silva AL, Silva AL, Ghattaoraya GS, Alfirevic A, Jones AR and Middleton D Nucleic Acid Research 2015, 39, 28, D784-8.
Liverpool, U.K.

support@allelefrequencies.net


Valid XHTML 1.0 Transitional