Allele Frequencies in World Populations

HLA > Haplotype Frequency Search

Please specify your search by selecting options from boxes. Then, click "Search" to find HLA Haplotype frequencies that match your criteria. Remember at least one option must be selected.
A B C DRB1 DPA1 DPB1 DQA1 DQB1

Population:  Country:  Source of dataset : 
Region:  Ethnic Origin:     Type of study :  Sort by: 
Sample Size:      Sample Year:     Loci Tested: 
Displaying 1 to 100 (from 669) records   Pages: 1 2 3 4 5 6 7 of 7  

Line Haplotype Population Frequency (%) Sample Size Distribution¹
 1  DQA1*05:05-DQB1*03:01  Tunisia 24.7000100
 2  DRB1*11-DQA1*05:05-DQB1*03:01  Czech Republic pop 3 15.3000180
 3  DRB1*11-DQA1*05:05-DQB1*03:01  Iran 9.600058
 4  A*31:01-B*39:01-C*08:03-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 5.9180150
 5  DRB1*11:02-DQA1*05:05-DQB1*03:01  Congo Kinshasa Bantu 5.600090
 6  DRB1*13:03:02-DQA1*05:05-DQB1*03:01  Morocco Settat Chaouya 5.500098
 7  A*02:01-B*18:01-C*07:01-DRB1*11:04-DQA1*05:05-DQB1*03:01  Kosovo 5.2420124
 8  A*68:01-B*35:01-C*04:01-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 5.0000150
 9  DRB1*11:01-DQA1*05:05-DQB1*03:01  Tunisia 5.0000100
 10  A*68:03-B*35:01-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*04:02  Mexico Chiapas Lacandon Mayans 4.1284218
 11  DQA1*05:05-DQB1*03:03  Tunisia 4.1000100
 12  DRB1*11:01-DQA1*05:05-DQB1*03:01  South Korea pop 5 4.0000467
 13  DRB1*11:01-DQA1*05:05-DQB1*03:01  South Korea pop 1 3.4000324
 14  DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*05:01  Hong Kong Chinese HKBMDR. DQ and DP 3.06091,064
 15  DRB1*11:04-DQA1*05:05-DQB1*03:01  Tunisia 3.0000100
 16  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*05:01  China Zhejiang Han pop 2 2.9991833
 17  DRB1*12:01-DQA1*05:05-DQB1*03:01-DPB1*05:01  South Korea pop 2 2.7000207
 18  A*31:01-B*52:01-C*15:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 2.6667150
 19  DRB1*13:03-DQA1*05:05-DQB1*03:01:01  Iran 2.600058
 20  DRB1*12:01-DQA1*05:05-DQB1*03:01  Tunisia 2.5000100
 21  DRB1*12-DQA1*05:05-DQB1*03:01  Czech Republic pop 3 2.5000180
 22  DRB1*13-DQA1*05:05-DQB1*03:01  Czech Republic pop 3 2.5000180
 23  A*24:02-B*39:02-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Chichen Itza Maya (prehispanic) 2.127747
 24  A*80:01-B*45:01-C*06:02-DRB1*13:03:02-DQA1*05:05-DQB1*03:01  Morocco Atlantic Coast Chaouya 2.100098
 25  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPB1*05:01  South Korea pop 11 2.1000149
 26  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPB1*05:01  South Korea pop 2 2.0000207
 27  DRB1*12:01-DQA1*05:05-DQB1*03:01  South Korea pop 1 1.9000324
 28  A*31:01-B*39:01-C*08:01-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.7486150
 29  A*31:01-B*39:05-C*08:03-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.7486150
 30  A*02:01-B*51:01-C*15:02-DRB1*11:01-DQA1*05:05-DQB1*03:01  Kosovo 1.6130124
 31  A*68:01-B*18:01-C*02:02-DRB1*11:04-DQA1*05:05-DQB1*03:01  Kosovo 1.6130124
 32  A*02:01-B*18:01-C*07:01-DRB1*11:04-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*04:02  Mexico Chiapas Lacandon Mayans 1.6055218
 33  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPB1*05:01  South Korea pop 1 1.6000324
 34  DRB1*12:01-DQA1*05:05-DQB1*03:01  South Korea pop 5 1.6000467
 35  A*31:01-B*39:05-C*08:01-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.5847150
 36  DRB1*12:01-DQA1*05:05-DQB1*03:01-DPB1*02:01  South Korea pop 1 1.4000324
 37  A*02:01-B*15:04-C*03:03-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.3333150
 38  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*02:01  China Zhejiang Han pop 2 1.3275833
 39  DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*02:01  Hong Kong Chinese HKBMDR. DQ and DP 1.28341,064
 40  A*03:01-B*35:01-C*04:01-DRB1*11:04-DQA1*05:05-DQB1*03:01  Kosovo 1.2100124
 41  DRB1*11:01-DQA1*05:05-DQB1*03:01-DPB1*02:01  South Korea pop 11 1.2000149
 42  A*24:02-B*15:01-C*01:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Chichen Itza Maya (prehispanic) 1.063847
 43  A*24:02-B*40:02-C*03:04-DRB1*16:02-DQA1*05:05-DQB1*03:02  Mexico Chichen Itza Maya (prehispanic) 1.063847
 44  A*31:01-B*35:20-C*15:09-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Chichen Itza Maya (prehispanic) 1.063847
 45  A*31:01-B*48:01-C*08:03-DRB1*16:02-DQA1*05:05-DQB1*03:03  Mexico Chichen Itza Maya (prehispanic) 1.063847
 46  A*68:01-B*40:08-C*03:04-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Chichen Itza Maya (prehispanic) 1.063847
 47  A*68:05-B*35:23-C*04:01-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Chichen Itza Maya (prehispanic) 1.063847
 48  A*02:01-B*07:02-C*07:02-DRB1*11:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.0000150
 49  A*02:01-B*51:01-C*15:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Brazil Puyanawa 1.0000150
 50  DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*02:02  Hong Kong Chinese HKBMDR. DQ and DP 0.98881,064
 51  A*02:01:01-B*18:01:01-C*07:01:01-DRB1*11:04:01-DQA1*05:05:01-DQB1*03:01-DPA1*01:03:01-DPB1*04:01:01  Russia Belgorod region 0.9804153
 52  A*68:01:02-B*44:02:01-C*07:04:01-DRB1*11:01:01-DQA1*05:05:01-DQB1*03:01-DPA1*01:03:01-DPB1*02:01:02  Russia Belgorod region 0.9804153
 53  A*01:01-B*81:01-C*18:01-DRB1*11:01-DQA1*05:05-DQB1*03:19  United Arab Emirates Abu Dhabi 0.960052
 54  A*02:01-B*50:01-C*07:01-DRB1*11:01-DQA1*05:05-DQB1*03:19  United Arab Emirates Abu Dhabi 0.960052
 55  A*03:02-B*08:01-C*07:02-DRB1*11:01-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 56  A*23:01-B*50:01-C*07:01-DRB1*04:02-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 57  A*24:02-B*35:02-C*12:03-DRB1*11:04-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 58  A*24:02-B*50:01-C*06:02-DRB1*11:01-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 59  A*24:03-B*58:02-C*12:03-DRB1*11:02-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 60  A*29:02-B*15:03-C*04:01-DRB1*11:01-DQA1*05:05-DQB1*05:01  United Arab Emirates Abu Dhabi 0.960052
 61  A*31:01-B*15:17-C*17:03-DRB1*03:01-DQA1*05:05-DQB1*02:01  United Arab Emirates Abu Dhabi 0.960052
 62  A*32:01-B*15:220-C*12:03-DRB1*11:01-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 63  A*32:01-B*39:10-C*04:01-DRB1*08:04-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 64  A*32:01-B*44:02-C*08:01-DRB1*12:02-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 65  A*32:01-B*51:01-C*07:02-DRB1*15:01-DQA1*05:05-DQB1*05:02  United Arab Emirates Abu Dhabi 0.960052
 66  A*33:03-B*58:01-C*03:02-DRB1*03:01-DQA1*05:05-DQB1*02:01  United Arab Emirates Abu Dhabi 0.960052
 67  A*33:03-B*58:01-C*03:02-DRB1*15:01-DQA1*05:05-DQB1*06:02  United Arab Emirates Abu Dhabi 0.960052
 68  A*68:01-B*51:01-C*16:01-DRB1*11:01-DQA1*05:05-DQB1*02:02  United Arab Emirates Abu Dhabi 0.960052
 69  A*74:01-B*38:01-C*06:02-DRB1*08:04-DQA1*05:05-DQB1*03:01  United Arab Emirates Abu Dhabi 0.960052
 70  A*02-B*51-DRB1*11:01-DQA1*05:05-DQB1*03:01  Brazil Paraná Caucasian 0.9446641
 71  A*24:02-B*35:03-C*12:03-E*01:03:02-F*01:01:02-G*01:01-DRB1*11:01-DQA1*05:05-DQB1*03:01  Portugal Azores Terceira Island 0.8772130
 72  DRB1*12:01-DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*02:02  China Zhejiang Han pop 2 0.8724833
 73  A*02:01:01-B*18:01:01-C*07:01:01-DRB1*11:04:01-DQA1*05:05:01-DQB1*03:01:01-DPA1*01:03:01-DPB1*04:02  Russian Federation Vologda Region 0.8403119
 74  A*02:01-B*18:01-C*07:01-DRB1*11:01-DQA1*05:05-DQB1*03:01  Kosovo 0.8060124
 75  A*02:01-B*35:03-C*04:01-DRB1*11:04-DQA1*05:05-DQB1*03:01  Kosovo 0.8060124
 76  A*02:01-B*35:03-C*04:01-DRB1*12:01-DQA1*05:05-DQB1*03:01  Kosovo 0.8060124
 77  A*02:01-B*41:02-C*17:03-DRB1*13:03-DQA1*05:05-DQB1*03:01  Kosovo 0.8060124
 78  A*24:02-B*35:03-C*12:03-DRB1*11:01-DQA1*05:05-DQB1*03:01  Kosovo 0.8060124
 79  A*03:01-B*35:01-C*04:01-DRB1*11:01-DQA1*05:05-DQB1*03:19  Mexico Tixcacaltuyub Maya 0.746367
 80  A*29:02-B*44:03-C*16:01-DRB1*11:03-DQA1*05:05-DQB1*03:01  Mexico Tixcacaltuyub Maya 0.746367
 81  A*31:01-B*35:01-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Tixcacaltuyub Maya 0.746367
 82  A*68:03-B*39:05-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01  Mexico Tixcacaltuyub Maya 0.746367
 83  A*02-B*18-DRB1*11:04-DQA1*05:05-DQB1*03:01  Brazil Paraná Caucasian 0.6967641
 84  A*68:01-B*39:05-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*04:02  Mexico Chiapas Lacandon Mayans 0.6881218
 85  A*11:01-B*07:02-C*07:01-DRB1*15:01-DQA1*05:05-DQB1*06:01  Brazil Puyanawa 0.6667150
 86  A*02:01:01-B*18:01:01-C*07:01:01-DRB1*11:04:01-DQA1*05:05:01-DQB1*03:01-DPA1*01:03:01-DPB1*04:02  Russia Belgorod region 0.6536153
 87  A*02:01:01-B*35:02:01-C*06:02:01-DRB1*11:04:01-DQA1*05:05:01-DQB1*03:01:01-DPA1*01:03:01-DPB1*03:01  Russia Belgorod region 0.6536153
 88  A*02:01:01-B*51:01:01-C*04:01:01-DRB1*04:02:01-DQA1*05:05:01-DQB1*03:02-DPA1*01:03:01-DPB1*03:01  Russia Belgorod region 0.6536153
 89  A*03:01:01-B*18:01:01-C*07:01:01-DRB1*11:04:01-DQA1*05:05:01-DQB1*03:01-DPA1*01:03:01-DPB1*04:01:01  Russia Belgorod region 0.6536153
 90  A*25:01:01-B*18:01:01-C*12:03:01-DRB1*11:01:01-DQA1*05:05:01-DQB1*03:01-DPA1*01:03:01-DPB1*04:02  Russia Belgorod region 0.6536153
 91  A*02-B*35-DRB1*11:04-DQA1*05:05-DQB1*03:01  Brazil Paraná Caucasian 0.6106641
 92  A*02-B*35-DRB1*11:01-DQA1*05:05-DQB1*03:01  Brazil Paraná Caucasian 0.5921641
 93  DRB1*12:01-DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*05:01  China Zhejiang Han pop 2 0.5016833
 94  A*24-B*35-DRB1*11:01-DQA1*05:05-DQB1*03:01  Brazil Paraná Caucasian 0.4680641
 95  A*02:01-B*18:01-C*07:01-DRB1*11:04-DQA1*05:05-DQB1*03:01-DPA1*02:02-DPB1*05:01  Mexico Chiapas Lacandon Mayans 0.4587218
 96  A*68:03-B*35:01-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*02:01  Mexico Chiapas Lacandon Mayans 0.4587218
 97  A*68:03-B*39:05-C*07:02-DRB1*16:02-DQA1*05:05-DQB1*03:01-DPA1*01:03-DPB1*04:02  Mexico Chiapas Lacandon Mayans 0.4587218
 98  A*01:01-B*15:39-C*03:03-E*01:01:01-F*01:01:01-G*01:06-DRB1*11:02-DQA1*05:05-DQB1*02:01  Portugal Azores Terceira Island 0.4386130
 99  A*01:01-B*41:01-C*06:02-E*01:03:01-F*01:01:01-G*01:06-DRB1*12:01-DQA1*05:05-DQB1*03:01  Portugal Azores Terceira Island 0.4386130
 100  A*02:01-B*07:02-C*07:01-E*01:03:02-F*01:01:01-G*01:01-DRB1*12:01-DQA1*05:05-DQB1*03:01  Portugal Azores Terceira Island 0.4386130

Notes:

* Haplotype Frequencies: Total number of copies of the haplotype in the population sample (Haplotypes / 2n) shown in percentages (%).
   Important: This field has been expanded to two decimals to better represent frequencies of large datasets (e.g. where sample size > 1000 individuals)
¹ Distribution - Shows the geographic distribution in overlaid maps of the complete haplotype (left icon) or the input alleles if low level resolution was entered (right icon).


Displaying 1 to 100 (from 669) records   Pages: 1 2 3 4 5 6 7 of 7  


   

Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools
Gonzalez-Galarza FF, McCabe A, Santos EJ, Jones J, Takeshita LY, Ortega-Rivera ND, Del Cid-Pavon GM, Ramsbottom K, Ghattaoraya GS, Alfirevic A, Middleton D and Jones AR Nucleic Acid Research 2020, 48:D783-8.
Liverpool, U.K.

support@allelefrequencies.net


Valid XHTML 1.0 Transitional