Please specify your search by selecting options from boxes. Then, click "Search" to find HLA allele frequencies
that match your criteria. Remember at least one option must be selected.
Line |
Allele |
Population |
% of individuals
that have the allele |
Allele
Frequency
(in_decimals) |
Sample
Size |
IMGT/HLA¹
Database |
Distribution² |
Haplotype³
Association |
Notesª |
401 |
A*01:02 | | Switzerland Graubunden | | 0 | | 759 | See | | | |
402 |
A*01:02 | | Switzerland Lausanne | | 0 | | 993 | See | | | |
403 |
A*01:02 | | Switzerland Lugano | | 0.0093 | | 1,169 | See | | | |
404 |
A*01:02 | | Switzerland Luzern | | 0 | | 1,553 | See | | | |
405 |
A*01:02 | | Switzerland Sion | | 0 | | 832 | See | | | |
406 |
A*01:02 | | Switzerland St Gallen | | 0 | | 2,113 | See | | | |
407 |
A*01:02 | | Switzerland Zurich | | 0 | | 4,875 | See | | | |
408 |
A*01:02 | | Taiwan Ami | 0.0 | 0 | | 98 | See | | | |
409 |
A*01:02 | | Taiwan Atayal | 0.0 | 0 | | 106 | See | | | |
410 |
A*01:02 | | Taiwan Bunun | 0.0 | 0 | | 101 | See | | | |
411 |
A*01:02 | | Taiwan Hakka | 0.0 | 0 | | 55 | See | | | |
412 |
A*01:02 | | Taiwan Minnan pop 1 | 0.0 | 0 | | 102 | See | | | |
413 |
A*01:02 | | Taiwan Paiwan | 0.0 | 0 | | 51 | See | | | |
414 |
A*01:02 | | Taiwan Pazeh | 0.0 | 0 | | 55 | See | | | |
415 |
A*01:02 | | Taiwan Puyuma | 0.0 | 0 | | 50 | See | | | |
416 |
A*01:02 | | Taiwan Rukai | 0.0 | 0 | | 50 | See | | | |
417 |
A*01:02 | | Taiwan Saisiat | 0.0 | 0 | | 51 | See | | | |
418 |
A*01:02 | | Taiwan Siraya | 0.0 | 0 | | 51 | See | | | |
419 |
A*01:02 | | Taiwan Tao | 0.0 | 0 | | 50 | See | | | |
420 |
A*01:02 | | Taiwan Taroko | 0.0 | 0 | | 55 | See | | | |
421 |
A*01:02 | | Taiwan Thao | 0.0 | 0 | | 30 | See | | | |
422 |
A*01:02 | | Taiwan Tsou | 0.0 | 0 | | 51 | See | | | |
423 |
A*01:02 | | Tanzania Maasai | 1.2 | 0.0060 | | 336 | See | | |
|
424 |
A*01:02 | | Tunisia | 2.0 | 0.0100 | | 100 | See | | | |
425 |
A*01:02 | | Uganda Kampala | | 0.0030 | | 161 | See | | | |
426 |
A*01:02 | | Uganda Kampala pop 2 | | 0.0060 | | 175 | See | | | |
427 |
A*01:02 | | USA African American | | 0.0060 | | 252 | See | | | |
428 |
A*01:02 | | USA African American Bethesda | 0.0 | 0 | | 187 | See | | | |
429 |
A*01:02 | | USA African American pop 3 | | 0.0070 | | 564 | See | | | |
430 |
A*01:02 | | USA African American pop 4 | | 0.0065 | | 2,411 | See | | | |
431 |
A*01:02 | | USA Alaska Yupik | | 0 | | 252 | See | | | |
432 |
A*01:02 | | USA Asian | | 0 | | 358 | See | | | |
433 |
A*01:02 | | USA Asian pop 2 | | 0 | | 1,772 | See | | | |
434 |
A*01:02 | | USA Caucasian Bethesda | 0.0 | 0 | | 307 | See | | | |
435 |
A*01:02 | | USA Caucasian pop 2 | | 0 | | 265 | See | | | |
436 |
A*01:02 | | USA Caucasian pop 4 | | 0.0009 | | 1,070 | See | | | |
437 |
A*01:02 | | USA Hispanic | | 0.0060 | | 234 | See | | | |
438 |
A*01:02 | | USA Hispanic pop 2 | | 0.0030 | | 1,999 | See | | | |
439 |
A*01:02 | | USA NMDP African | | 0.0031 | | 28,557 | See | | | |
440 |
A*01:02 | | USA NMDP African American pop 2 | | 0.0042 | | 416,581 | See | | | |
441 |
A*01:02 | | USA NMDP Caribean Black | | 0.0033 | | 33,328 | See | | | |
442 |
A*01:02 | | USA NMDP Caribean Hispanic | | 0.0021 | | 115,374 | See | | | |
443 |
A*01:02 | | USA NMDP Caribean Indian | | 0.0020 | | 14,339 | See | | | |
444 |
A*01:02 | | USA NMDP European Caucasian | | 0.0001 | | 1,242,890 | See | | | |
445 |
A*01:02 | | USA NMDP Filipino | | 0.0000300 | | 50,614 | See | | | |
446 |
A*01:02 | | USA NMDP Hawaiian or other Pacific Islander | | 0.0001 | | 11,499 | See | | | |
447 |
A*01:02 | | USA NMDP Hispanic South or Central American | | 0.0014 | | 146,714 | See | | | |
448 |
A*01:02 | | USA NMDP Mexican or Chicano | | 0.0012 | | 261,235 | See | | | |
449 |
A*01:02 | | USA NMDP Middle Eastern or North Coast of Africa | | 0.0003 | | 70,890 | See | | | |
450 |
A*01:02 | | USA NMDP North American Amerindian | | 0.0002 | | 35,791 | See | | | |
451 |
A*01:02 | | USA NMDP South Asian Indian | | 0.0000050 | | 185,391 | See | | | |
452 |
A*01:02 | | USA NMDP Southeast Asian | | 0.0000200 | | 27,978 | See | | | |
453 |
A*01:02 | | USA North American Native | | 0 | | 187 | See | | | |
454 |
A*01:02 | | USA Philadelphia Caucasian | 0.0 | 0 | | 141 | See | | | |
455 |
A*01:02 | | USA San Antonio Caucasian | | 0 | | 222 | See | | | |
456 |
A*01:02 | | USA South Texas Hispanic | | 0 | | 194 | See | | | |
457 |
A*01:02 | | USA Spain Ancestry | | 0.0020 | | 279 | See | | | |
458 |
A*01:02 | | Zambia Lusaka | | 0 | | 44 | See | | | |
459 |
A*02:01 | | American Samoa | | 0.1300 | | 51 | See | | | |
460 |
A*02:01 | | Argentina Gran Chaco Eastern Toba | 46.4 | 0.3040 | | 135 | See | | | |
461 |
A*02:01 | | Argentina Gran Chaco Mataco Wichi | 40.9 | 0.2160 | | 49 | See | | | |
462 |
A*02:01 | | Argentina Gran Chaco Western Toba Pilaga | 60.0 | 0.4000 | | 19 | See | | | |
463 |
A*02:01 | | Argentina Rosario Toba | 34.9 | 0.1920 | | 86 | See | | | |
464 |
A*02:01 | | Armenia combined Regions | | 0.1550 | | 100 | See | | | |
465 |
A*02:01 | | Australia Cape York Peninsula Aborigine | | 0.1750 | | 103 | See | | | |
466 |
A*02:01 | | Australia Groote Eylandt Aborigine | | 0.1070 | | 75 | See | | | |
467 |
A*02:01 | | Australia Kimberly Aborigine | | 0.1110 | | 41 | See | | | |
468 |
A*02:01 | | Australia New South Wales Caucasian | | 0.2610 | | 134 | See | | | |
469 |
A*02:01 | | Australia Yuendumu Aborigine | | 0.1130 | | 191 | See | | | |
470 |
A*02:01 | | Austria | 48.0 | 0.2940 | | 200 | See | | | |
471 |
A*02:01 | | Azores Central Islands | | 0.2590 | | 59 | See | | | |
472 |
A*02:01 | | Azores Oriental Islands | | 0.2560 | | 43 | See | | | |
473 |
A*02:01 | | Azores Terceira Island | | 0.2330 | | 130 | See | | | |
474 |
A*02:01 | | Belgium | 50.0 | 0.2660 | | 99 | See | | | |
475 |
A*02:01 | | Belgium | 45.1 | 0.2591 | | 31,412 | See | | |
|
476 |
A*02:01 | | Brazil Puyanawa | 54.0 | 0.2970 | | 150 | See | | |
|
477 |
A*02:01 | | Brazil Belo Horizonte Caucasian | 43.2 | 0.2370 | | 95 | See | | | |
478 |
A*02:01 | | Brazil Mixed | | 0.1920 | | 108 | See | | | |
479 |
A*02:01 | | Brazil Terena | 38.3 | 0.2080 | | 60 | See | | | |
480 |
A*02:01 | | Brazil Vale do Ribeira Quilombos | 0.1 | 0 | | 144 | See | | | |
481 |
A*02:01 | | Bulgaria Romani | | 0.2080 | | 13 | See | | | |
482 |
A*02:01 | | Burkina Faso Fulani | | 0.0510 | | 49 | See | | | |
483 |
A*02:01 | | Burkina Faso Rimaibe | | 0.1380 | | 47 | See | | | |
484 |
A*02:01 | | Cameroon Baka Pygmy | | 0 | | 10 | See | | | |
485 |
A*02:01 | | Cameroon Bamileke | | 0.0110 | | 77 | See | | | |
486 |
A*02:01 | | Cameroon Beti | | 0.1120 | | 174 | See | | | |
487 |
A*02:01 | | Cameroon Sawa | | 0.0380 | | 13 | See | | | |
488 |
A*02:01 | | Cameroon Yaounde | | 0.0710 | | 92 | See | | | |
489 |
A*02:01 | | Chile Easter Island | | 0.0950 | | 21 | See | | | |
490 |
A*02:01 | | Chile Mapuche | | 0.2238 | | 66 | See | | |
|
491 |
A*02:01 | | Chile Santiago Mixed | 30.0 | 0.1633 | | 70 | See | | | |
492 |
A*02:01 | | China Beijing | | 0.1870 | | 67 | See | | | |
493 |
A*02:01 | | China Beijing Shijiazhuang Tianjian Han | | 0.1580 | | 618 | See | | | |
494 |
A*02:01 | | China Canton Han | | 0.1530 | | 264 | See | | | |
495 |
A*02:01 | | China Guangxi Region Maonan | | 0.0460 | | 108 | See | | | |
496 |
A*02:01 | | China Guangzhou | | 0.1280 | | 102 | See | | | |
497 |
A*02:01 | | China Guizhou Province Bouyei | | 0.0210 | | 109 | See | | | |
498 |
A*02:01 | | China Guizhou Province Miao pop 2 | | 0.0240 | | 85 | See | | | |
499 |
A*02:01 | | China Guizhou Province Shui | | 0.0450 | | 153 | See | | | |
500 |
A*02:01 | | China Han HIV negative | | 0.0630 | | 72 | See | | | |
Notes:
* Allele Frequency: Total number of copies of the allele in the population sample (Alleles / 2n) in decimal format.
Important: This field has been expanded to four decimals to better represent frequencies of large datasets (e.g. where sample size > 1000 individuals)
* % of individuals that have the allele: Percentage of individuals who have the allele in the population (Individuals / n).
* Allele Frequencies shown in
green were calculated from Phenotype Frequencies assuming Hardy-Weinberg proportions.
AF = 1-square_root(1-PF)
PF = 1-(1-AF)
2
AF = Allele Frequency; PF = Phenotype Frequency, i.e. (%) of the individuals carrying the allele.
* Allele Frequencies marked with (*) were calculated from all alleles in the corresponding
G group.
¹ IMGT/HLA Database - For more details of the allele.
² Distribution - Graphical distribution of the allele.
³ Haplotype Association - Find HLA haplotypes with this allele.
ª Notes - See notes for ambiguous combinations of alleles.
Displaying 401 to 500
(from 790) records |
|
Pages: |
|
|
1 2 3 4 5 6 7 8 of 8
|
|
|
|
|
|
|