Allele Frequencies in World Populations

HLA > Haplotype Frequency Search

Please specify your search by selecting options from boxes. Then, click "Search" to find HLA Haplotype frequencies that match your criteria. Remember at least one option must be selected.
A B C DRB1 DPA1 DPB1 DQA1 DQB1

Population:  Country:  Source of dataset : 
Region:  Ethnic Origin:     Type of study :  Sort by: 
Sample Size:      Sample Year:     Loci Tested: 
Displaying 1 to 100 (from 7,292) records   Pages: 1 2 3 4 5 6 7 8 9 10 of 73  

Line Haplotype Population Frequency (%) Sample Size Distribution¹
 1  A*33-B*58-C*03  Pakistan Baloch 11.100066
 2  A*33-B*58  Pakistan Baloch 10.800066
 3  A*33:03-B*44:03-C*14:03  Japan pop 5 10.7000117
 4  A*33-B*44-C*07-DRB1*07  Myanmar Rakhine 9.375048
 5  A*33:03-B*58:01-DRB1*03:01  Taiwan Tzu Chi Morrow Donor Registry 8.361046,682
 6  A*33:03-C*03:02  Taiwan Minnan pop 1 8.3000102
 7  A*33:03-B*58:01  Taiwan Hakka 8.200055
 8  A*33:03-C*03:02  Taiwan Hakka 8.200055
 9  A*33-B*58-DRB1*03  Pakistan Baloch 8.200066
 10  A*33:03-B*58:01  Singapore Chinese 8.0000149
 11  A*33:03-B*58:01  Taiwan Minnan pop 1 7.8000102
 12  A*33:03-B*58:01-C*03:02  China Southwest Dai 7.7000124
 13  A*33-B*44-DRB1*13  Brazil Parana Oriental 7.600033
 14  A*33:03-B*58:01-C*03:02  China Canton Han 7.4000264
 15  A*33-B*44-C*07-DRB1*07  Myanmar Mon 7.031064
 16  A*33-B*08-DRB1*03  Pakistan Burusho 6.700092
 17  A*33-B*14:02-DRB1*01-DQB1*05  Mexico San Luis Potosi, San Luis Potosi city 6.666730
 18  A*33:03-B*58:01-DRB1*03:01  Taiwan Tzu Chi Cord Blood Bank 6.6000710
 19  A*33-B*58-C*03  Malaysia Perak Rawa 6.500023
 20  A*33:03-B*58:01  Hong Kong Chinese 6.4000569
 21  A*33-B*44-DRB1*07  Bangladesh Dhaka Bangalee 6.3000141
 22  A*33:03-B*58:01  USA Asian 6.1000358
 23  A*33:03-B*58:01-DRB1*03:01  Malaysia Patani 6.000025
 24  A*33-B*14:02-DRB1*01  Pakistan Karachi Parsi 6.000091
 25  A*33:03-B*58:01-C*03:02  USA Asian 5.9000358
 26  A*33-B*08  Pakistan Burusho 5.900092
 27  A*33:03-B*58:01-C*03:02  South Korea pop 3 5.8000485
 28  A*33:01-B*14:02-DRB1*01:02  Israel Kavkazi Jews 5.74002,840
 29  A*33-B*44-C*14  South Korea pop 1 5.6000324
 30  A*33-B*44-DRB1*13:02  South Korea pop 1 5.5000324
 31  A*33:03-B*44:03-C*07:06-DRB1*07:01-DQB1*02:02  India East UCBB 5.40472,403
 32  A*33-B*58-C*03:02  South Korea pop 1 5.4000324
 33  A*33:03-B*44:03-DRB1*07:01  Malaysia Kelantan 5.357128
 34  A*33-B*14-C*08-DRB1*04  Macedonia MBMDR - Macedonian Muslims 5.263276
 35  A*33-B*08-C*07:02  Pakistan Burusho 5.200092
 36  A*33:03-B*44:06-C*15:02:01  India Mumbai Maratha 5.100091
 37  A*33:03:01-B*44:03:02-C*07:06  South African Indian population 5.000050
 38  A*33:03:01-B*58:01:01-C*03:02:02  South African Indian population 5.000050
 39  A*33:03-B*58:01  Taiwan Thao 5.000030
 40  A*33:03-C*03:02  Taiwan Thao 5.000030
 41  A*33:03-B*53:01  Cuba Mixed Race 4.800042
 42  A*33:03-B*44:03-C*14:03  South Korea pop 3 4.7000485
 43  A*33:03-B*58:01-C*03:02-DRB1*03:01  Hong Kong Chinese BMDR 4.64297,595
 44  A*33:03-B*58:01-C*03:02-DRB1*03:01-DRB3*02:02-DQB1*02:01  USA NMDP Chinese 4.600599,672
 45  A*33:03-B*35:03-DRB1*13:01  China Yunnan Province Wa 4.6000119
 46  A*33:03-B*44:03-DRB1*13:02  South Korea pop 3 4.6000485
 47  A*33:03-B*44:03-DRB1*13:02  South Korea pop 10 4.60004,128
 48  A*33-B*58  Pakistan Burusho 4.600092
 49  A*33-B*58-C*03  Pakistan Burusho 4.600092
 50  A*33-B*58-DRB1*03  Thailand pop 4 4.540016,807
 51  A*33:03-B*58:01  USA Asian pop 2 4.53101,772
 52  A*33:03-B*44:03-C*14:03-DRB1*13:02  Japan pop 16 4.473018,604
 53  A*33:03:01-B*58:01:01-C*03:02:02-DRB1*03:01:01-DQB1*02:01:01  Vietnam Kinh 4.4550101
 54  A*33:03-B*58:01-C*03:02-DRB1*03:01  China Southwest Dai 4.4000124
 55  A*33:03-B*58:01-DRB1*03:01  China Southwest Dai 4.4000124
 56  A*33-B*14:01-C*08:02  Pakistan Karachi Parsi 4.400091
 57  A*33-B*44-C*07:01  Pakistan Karachi Parsi 4.400091
 58  A*33:03:01-C*07:01:01  China Jingpo Minority 4.3600105
 59  A*33:01-B*14:02-DRB1*01:02:01  Portugal North 4.300046
 60  A*33-B*58  Pakistan Kalash 4.300069
 61  A*33-B*58-DRB1*03  Pakistan Kalash 4.300069
 62  A*33:03-B*58:01-DRB1*03:01  Hong Kong Chinese cord blood registry 4.20043,892
 63  A*33:03-B*44:03-C*14:03-DRB1*13:02-DQB1*06:04  South Korea pop 3 4.2000485
 64  A*33-B*58-C*03-DRB1*03  Myanmar Rakhine 4.167048
 65  A*33-B*44-C*14  Brazil Parana Japanese 4.1600192
 66  A*33:01-B*58:01-C*03:02-DRB1*03:01-DQB1*02:01  Malaysia Peninsular Chinese 4.1237194
 67  A*33:03:01-B*58:01:01-C*03:02:02-DRB1*03:01:01-DQB1*02:01:01  China Zhejiang Han 4.01521,734
 68  A*33:01-B*14:02-C*08:02-DRB1*01:02-DQB1*05:01  Tunisia 4.0000100
 69  A*33:03-B*40:01-DRB1*15:02  Malaysia Patani 4.000025
 70  A*33:03-B*44:03-C*14:03-DRB1*13:02-DRB3*03:01-DQB1*06:04  USA NMDP Japanese 3.926724,582
 71  A*33:03-B*58:01-C*03:02-DRB1*03:01  Taiwan pop 2 3.9000364
 72  A*33-B*44-DRB1*07  Pakistan Karachi Parsi 3.900091
 73  A*33:01-B*14:02-DRB1*01:02  Azores Oriental Islands 3.800043
 74  A*33-B*44-DRB1*07  Malaysia pop 3 3.80001,445
 75  A*33-B*58-DRB1*03  United Arab Emirates 3.8000298
 76  A*33:03-B*44:03-C*07:06-DRB1*07:01-DQB1*02:02  India Northeast UCBB 3.7162296
 77  A*33-B*44-C*07-DRB1*07  Myanmar Shan 3.704054
 78  A*33-B*58-C*03-DRB1*15  Myanmar Shan 3.704054
 79  A*33:03-B*58:01-DRB1*03:01  China Guangxi Region Maonan 3.7000108
 80  A*33:03-B*58:01-C*03:02-DRB1*03:01-DRB3*02:02-DQB1*02:01  USA NMDP Vietnamese 3.668143,540
 81  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Hidalgo, Pachuca 3.658541
 82  A*33:03-B*44:03  USA Asian 3.6000358
 83  A*33:03-B*44:03-C*14:03-DRB1*13:02-DQB1*06:04-DPB1*04:01  Japan Central 3.6000371
 84  A*33:03-B*58:01  Taiwan Pazeh 3.600055
 85  A*33:03-C*03:02  Taiwan Pazeh 3.600055
 86  A*33:03-B*18:01-DRB1*07:01  Malaysia Kelantan 3.571428
 87  A*33:03-B*58:01-C*03:02-DRB1*03:01-DQB1*02:01  Vietnam Hanoi Kinh pop 2 3.5000170
 88  A*33-B*35-DRB1*15  Bangladesh Dhaka Bangalee 3.5000141
 89  A*33-B*44-DRB1*15  Bangladesh Dhaka Bangalee 3.5000141
 90  A*33:03-B*44:03-C*14:03-DRB1*13:02-DRB3*03:01-DQB1*06:04  USA NMDP Korean 3.491577,584
 91  A*33:01:01-B*14:02:01-C*08:02:01-DRB1*03:01:01-DQB1*02:01:01  Spain, Canary Islands, Gran canaria island 3.4900215
 92  A*33:03:01-B*44:03:02  China Jingpo Minority 3.4650105
 93  A*33:03:01-B*44:03:02-C*07:01:01  China Jingpo Minority 3.4650105
 94  A*33:03-B*44:03-DRB1*07:01  Malaysia Champa 3.448329
 95  A*33:03-B*58:01-DRB1*03:01  Malaysia Champa 3.448329
 96  A*33-B*58  Pakistan Mixed Pathan 3.4000100
 97  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Jalisco, Tlajomulco 3.333330
 98  A*33:03-B*14:05-C*05:09  India West Coast Parsi 3.300050
 99  A*33-B*58-DRB1*03  Pakistan Burusho 3.200092
 100  A*33-B*14:02-DRB1*01-DQB1*05  Mexico Sonora, Ciudad Obregón 3.1469143

Notes:

* Haplotype Frequencies: Total number of copies of the haplotype in the population sample (Haplotypes / 2n) shown in percentages (%).
   Important: This field has been expanded to two decimals to better represent frequencies of large datasets (e.g. where sample size > 1000 individuals)
¹ Distribution - Shows the geographic distribution in overlaid maps of the complete haplotype (left icon) or the input alleles if low level resolution was entered (right icon).


Displaying 1 to 100 (from 7,292) records   Pages: 1 2 3 4 5 6 7 8 9 10 of 73  


   

Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools
Gonzalez-Galarza FF, McCabe A, Santos EJ, Jones J, Takeshita LY, Ortega-Rivera ND, Del Cid-Pavon GM, Ramsbottom K, Ghattaoraya GS, Alfirevic A, Middleton D and Jones AR Nucleic Acid Research 2020, 48:D783-8.
Liverpool, U.K.

support@allelefrequencies.net


Valid XHTML 1.0 Transitional