Allele Frequencies in World Populations

HLA > Haplotype Frequency Search

Please specify your search by selecting options from boxes. Then, click "Search" to find HLA Haplotype frequencies that match your criteria. Remember at least one option must be selected.
A B C DRB1 DPA1 DPB1 DQA1 DQB1

Population:  Country:  Source of dataset : 
Region:  Ethnic Origin:     Type of study :  Sort by: 
Sample Size:      Sample Year:     Loci Tested: 
Displaying 1 to 100 (from 291) records   Pages: 1 2 3 of 3  

Line Haplotype Population Frequency (%) Sample Size Distribution¹
 1  A*03:01:01-B*07:06:01-C*16:01:01-DRB1*07:01:01-DQB1*02:02:01-DPA1*02:01:04-DPB1*11:01:01  Brazil Barra Mansa Rio State Black 2.381073
 2  A*11:01:01-B*07:06:01-C*07:02:01-DRB1*15:01:01-DQB1*06:01:01  India Andhra Pradesh Telugu Speaking 1.3441186
 3  A*24:02:01-B*07:06:01-C*07:02:01-DRB1*15:01:01-DQB1*06:01:01  India Kerala Malayalam speaking 0.7020356
 4  A*24:02-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.403611,446
 5  A*11:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.358311,446
 6  A*01:01:01-B*07:06:01-C*07:02:01-DRB1*08:04:01-DQB1*04:02:01-DPB1*02:01:02  South African Black 0.3520142
 7  A*01:01:01-B*07:06:01-C*07:02:01-DRB1*15:01:01-DQB1*06:02:01-DPB1*04:01:01  South African Black 0.3520142
 8  A*23:17-B*07:06:01-C*07:02:01-DRB1*07:01:01-DQB1*02:02:01-DPB1*02:01:02  South African Black 0.3520142
 9  A*68:02:01-B*07:06:01-C*08:04:01-DRB1*11:01:02-DQB1*06:02:01-DPB1*01:01:01  South African Black 0.3520142
 10  A*24:02:01-B*07:06-C*15:05:02-DRB1*01:01:01-DQA1*01:01:01-DQB1*05:01-DPA1*01:03:01-DPB1*03:01  Russia Belgorod region 0.3268153
 11  A*24:02-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.31755,829
 12  A*33:03:01-B*07:06-C*07:06-DRB1*04:08:01-DQB1*03:02:01  India Karnataka Kannada Speaking 0.2870174
 13  A*01:01:01-B*07:06:01-C*07:02:01-DRB1*04:03:01-DQB1*03:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 14  A*01:01:01-B*07:06:01-C*14:02:01-DRB1*13:02:01-DQB1*06:01:01  India Andhra Pradesh Telugu Speaking 0.2688186
 15  A*02:03:01-B*07:06:01-C*07:02:01-DRB1*04:05:01-DQB1*05:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 16  A*02:11:01-B*07:06:01-C*03:02:02-DRB1*07:03-DQB1*06:01:01  India Andhra Pradesh Telugu Speaking 0.2688186
 17  A*11:01:01-B*07:06:01-C*07:02:01-DRB1*04:10:01-DQB1*04:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 18  A*11:01:01-B*07:06:01-C*07:02:01-DRB1*11:01:01-DQB1*03:01:01  India Andhra Pradesh Telugu Speaking 0.2688186
 19  A*11:01:01-B*07:06:01-C*07:04:01-DRB1*15:02:02-DQB1*06:01:01  India Andhra Pradesh Telugu Speaking 0.2688186
 20  A*24:02:01-B*07:06:01-C*03:03:01-DRB1*04:05:01-DQB1*04:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 21  A*24:02:13-B*07:06:01-C*07:02:01-DRB1*04:10:01-DQB1*04:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 22  A*26:01:01-B*07:06:01-C*15:02:01-DRB1*15:01:01-DQB1*06:02:01  India Andhra Pradesh Telugu Speaking 0.2688186
 23  A*68:01:02-B*07:06:01-C*07:02:01-DRB1*11:01:01-DQB1*03:01:01  India Andhra Pradesh Telugu Speaking 0.2688186
 24  A*11:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.26575,829
 25  A*03:01:01-B*07:06:01-C*15:05:02-DRB1*03:01:01-DQB1*02:01:01-DPA1*01:03:01-DPB1*11:01:01  Brazil Rio de Janeiro Caucasian 0.1946521
 26  A*03:01:01-B*07:06:01-C*15:05:02-DRB1*07:01:01-DQB1*03:01:01-DPA1*02:01:01-DPB1*45:01  Brazil Rio de Janeiro Caucasian 0.1946521
 27  A*26:01:01-B*07:06:01-C*06:02:01-DRB1*04:05:01-DQB1*06:02:01-DPA1*01:03:01-DPB1*124:01:01  Brazil Rio de Janeiro Caucasian 0.1946521
 28  A*66:01:01-B*07:06:01-C*06:02:01-DRB1*04:05:01-DQB1*06:02:01-DPA1*01:03:01-DPB1*124:01:01  Brazil Rio de Janeiro Caucasian 0.1946521
 29  A*11:01-B*07:06-C*04:01-DRB1*14:04-DQB1*05:03  India Northeast UCBB 0.1689296
 30  A*02:11-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.160911,446
 31  A*11:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.157811,446
 32  A*03:01:01-B*07:06:01-C*07:02:01-DRB1*03:01:01-DQB1*02:01:01  India Kerala Malayalam speaking 0.1400356
 33  A*33:65-B*07:06:01-C*03:02:02-DRB1*13:01:01-DQB1*06:03:01  India Kerala Malayalam speaking 0.1400356
 34  A*68:01:02-B*07:06:01-C*03:02:02-DRB1*13:02:01-DQB1*06:09:01  India Kerala Malayalam speaking 0.1400356
 35  A*03:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.138611,446
 36  A*01:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.106911,446
 37  A*30:02-B*07:06-C*15:05-DRB1*04:05  Italy pop 5 0.1000975
 38  B*07:06-DRB1*04:05  Italy pop 5 0.1000975
 39  A*24:02-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.095911,446
 40  A*24:07-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India Central UCBB 0.09364,204
 41  A*24:02-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.09032,403
 42  A*30:02-B*07:06-C*15:05  Italy pop 5 0.0900975
 43  A*02:11-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.08965,829
 44  A*24:07-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India North UCBB 0.07655,849
 45  A*11:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India West UCBB 0.07335,829
 46  A*24:02-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India North UCBB 0.07155,849
 47  A*24:02-B*07:06-C*07:02-DRB1*15:02-DQB1*06:01  India South UCBB 0.070911,446
 48  A*11:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.07022,403
 49  A*02:131-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.069211,446
 50  A*33:03-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.059211,446
 51  A*11:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India Central UCBB 0.05814,204
 52  A*02:11-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.05462,403
 53  B*07:06-DRB1*13:02  Italy pop 5 0.0500975
 54  A*02:11-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.048811,446
 55  A*24:02-B*07:06-C*07:02-DRB1*04:03-DQB1*03:02  India South UCBB 0.046911,446
 56  A*02:11-B*07:06-C*07:02-DRB1*15:02-DQA1*01:03-DQB1*04:02-DPA1*01:03-DPB1*04:01  United Arab Emirates Pop 1 0.0467570
 57  A*02:131-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.04515,829
 58  A*33:03-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.04305,829
 59  A*68:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.042811,446
 60  A*24:07-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.04162,403
 61  A*02:11-B*07:06-C*07:02-DRB1*15:02-DQB1*06:01  India South UCBB 0.038611,446
 62  A*03:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India North UCBB 0.03735,849
 63  A*01:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.03695,829
 64  A*26:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.036611,446
 65  A*02:131-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India Central UCBB 0.03574,204
 66  A*01:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.03462,403
 67  A*11:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India Central UCBB 0.03354,204
 68  A*01:01:01:01-B*07:06-C*15:05:02-DRB1*04:05:01-DQB1*03:02  Russia Nizhny Novgorod, Russians 0.03311,510
 69  A*24:02-B*07:06-C*01:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.030611,446
 70  A*11:01:01-B*07:06:01-C*03:04:01-DRB1*12:02:01-DQB1*03:01:01  China Zhejiang Han 0.02881,734
 71  A*11:01-B*07:06-C*07:02-DRB1*07:01-DQB1*03:03  India South UCBB 0.028811,446
 72  A*24:02:01-B*07:06:01-C*07:02:01-DRB1*09:01:02-DQB1*03:03:02  China Zhejiang Han 0.02881,734
 73  A*24:07-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.02835,829
 74  A*11:01:01-B*07:06:01-C*07:02:01-DRB1*12:02:01-DPB1*04:01:01  Hong Kong Chinese HKBMDR HLA 11 loci 0.02735,266
 75  A*02:09-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India South UCBB 0.027011,446
 76  A*24:02-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India Central UCBB 0.02654,204
 77  A*03:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.025511,446
 78  A*24:02-B*07:06-C*07:02-DRB1*08:03-DQB1*03:01  India South UCBB 0.024611,446
 79  A*03:01-B*07:06-C*07:02-DRB1*04:05-DQB1*04:02  India South UCBB 0.021811,446
 80  A*32:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.021811,446
 81  A*11:01-B*07:06-C*07:02-DRB1*15:02-DQB1*06:01  India South UCBB 0.021211,446
 82  A*01:01-B*07:06-C*07:02-DRB1*16:02-DQB1*05:02  India East UCBB 0.02082,403
 83  A*02:01-B*07:06-C*07:02-DRB1*09:01-DQB1*03:02  India East UCBB 0.02082,403
 84  A*02:06-B*07:06-C*07:02-DRB1*12:02-DQB1*03:01  India East UCBB 0.02082,403
 85  A*11:01-B*07:06-C*07:02-DRB1*04:02-DQB1*03:02  India East UCBB 0.02082,403
 86  A*11:01-B*07:06-C*07:02-DRB1*04:05-DQB1*04:02  India East UCBB 0.02082,403
 87  A*24:02-B*07:06-C*01:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.02082,403
 88  A*24:02-B*07:06-C*07:02-DRB1*08:03-DQB1*03:01  India East UCBB 0.02082,403
 89  A*24:02-B*07:06-C*07:02-DRB1*11:01-DQB1*03:01  India East UCBB 0.02082,403
 90  A*24:02-B*07:06-C*07:02-DRB1*11:04-DQB1*03:01  India East UCBB 0.02082,403
 91  A*24:02-B*07:06-C*07:02-DRB1*15:02-DQB1*05:03  India East UCBB 0.02082,403
 92  A*24:02-B*07:06-C*07:02-DRB1*15:02-DQB1*06:01  India West UCBB 0.02085,829
 93  A*29:01-B*07:06-C*01:02-DRB1*15:01-DQB1*06:01  India East UCBB 0.02082,403
 94  A*33:03-B*07:06-C*03:04-DRB1*15:01-DQB1*05:02  India East UCBB 0.02082,403
 95  A*74:05-B*07:06-C*07:02-DRB1*12:02-DQB1*03:01  India East UCBB 0.02082,403
 96  A*33:03-B*07:06-C*07:02-DRB1*15:01-DQB1*05:02  India West UCBB 0.01975,829
 97  A*68:01-B*07:06-C*07:02-DRB1*15:01-DQB1*06:01  India West UCBB 0.01975,829
 98  A*11:01:01-B*07:06:01-C*07:02:01-DRB1*15:01:01-DPB1*05:01:01  Hong Kong Chinese HKBMDR HLA 11 loci 0.01945,266
 99  A*68:01-B*07:06-C*07:02-DRB1*14:04-DQB1*05:03  India South UCBB 0.019111,446
 100  A*24:02:01-B*07:06:01-C*07:02:01-DRB1*11:129-DPB1*02:01:02  Hong Kong Chinese HKBMDR HLA 11 loci 0.01905,266

Notes:

* Haplotype Frequencies: Total number of copies of the haplotype in the population sample (Haplotypes / 2n) shown in percentages (%).
   Important: This field has been expanded to two decimals to better represent frequencies of large datasets (e.g. where sample size > 1000 individuals)
¹ Distribution - Shows the geographic distribution in overlaid maps of the complete haplotype (left icon) or the input alleles if low level resolution was entered (right icon).


Displaying 1 to 100 (from 291) records   Pages: 1 2 3 of 3  


   

Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools
Gonzalez-Galarza FF, McCabe A, Santos EJ, Jones J, Takeshita LY, Ortega-Rivera ND, Del Cid-Pavon GM, Ramsbottom K, Ghattaoraya GS, Alfirevic A, Middleton D and Jones AR Nucleic Acid Research 2020, 48:D783-8.
Liverpool, U.K.

support@allelefrequencies.net


Valid XHTML 1.0 Transitional